How Electric Motors work

 
 

 

Pictured: the coils of a brushless motor

 
 
 
 

An electric motor converts electricity into mechanical motion.

Most electric motors work by electromagnetism, but motors based on other electromechanical phenomena, such as electrostatic forces and the piezoelectric effect, exist.

Most electromagnetic motors are rotary, but linear types also exist. In a rotary motor, the rotating part (usually on the inside) is called the rotor, and the stationary part is called the stator. The motor contains electromagnets that are wound on a frame called the armature. Kits for making very simple motors are used in many schools. A motor uses the power of force a magnet has to repel and attract opposite poles.
the motor is made up of 2 or more coils of wire attached to the rotor inside a magnetic field, when power is applied to a coil of wire it turns into an electro magnet, if this electro magnet was near a like pole of another magnet (in this case the permanent magnet the rotor is housed in then the rotor would turn as the electro magnet gets repelled by the like pole and attracted to the unlike pole. if we then change the electrical polarity on the electromagnet its magnet poles would change and the same thing would happen again. This is the basics of how a motor works and there is no need to stand there flicking a switch or swapping the ends of your battery around in order to keep the motor turning, the motor uses two contacts called brushes that come in contact with the rotors contacts called the commutator as the rotor moves around this acts like a switch to alternate the current to the coils which in turn allows the motor to turn.

One of the first electromagnetic rotary motors, if not the first, was invented by Michael Faraday in 1821, and consisted of a free-hanging wire dipping into a pool of mercury. A permanent magnet was placed in the middle of the pool. When a current was passed through the wire, the wire rotated around the magnet, showing that the current gave rise to a circular magnetic field around the wire. This motor is often demonstrated in school physics classes, but brine is sometimes used in place of the toxic mercury.

DC motor speed generally depends on a combination of the voltage and current flowing in the motor coils and the motor load or braking torque. The speed is typically controlled by altering the voltage or current flow by using taps in the motor windings or by having a variable voltage supply. As this type of motor can develop quite high torque at low speed it is often used in traction applications such as locomotives.

However there are a number of limitations in the classic design, many due to the need for brushes to rub against the commutator. The rubbing creates friction and the higher the rpm the harder the brushes have to press to maintain good contact. Not only does this friction make the motor noisy it creates an upper limit on the rpm and means the brushes eventually wear out and need to replaced. The imperfect electric contact also causes electrical noise in the attached circuit. These problems vanish when you turn the motor inside out, putting the permanent magnets on the inside and the coils on the outside thus designing out the need for brushes in a brushless design.

AC motors
AC motors generally come in two flavours: single phase and three phase.

Single-Phase AC motors
The most common single-phase motor is the shaded-pole synchronous motor, which is most commonly used in devices requiring lower torque such as electric fans, microwave ovens and other small household appliances.

Another common single-phase AC motor is the induction motor, commonly used in major appliances such as washing machines and clothes dryers. These motors can generally provide greater starting torque by using a special startup winding in conjunction with a starting capacitor and a centrifugal switch. When starting, the capacitor and special winding are temporarily connected to the power source and provide starting torque. Once the motor reaches speed, the centrifugal switch disconnects the capacitor and startup winding.

Three-Phase AC motors
For higher-power applications the three phase (or polyphase) AC induction motor is used. This uses the phase differences between the three phases of the polyphase electrical supply to create a rotating electromagnetic field in the motor. Often, the rotor consists of a number of copper conductors embedded in steel. Through electromagnetic induction the rotating magnetic field induces current to flow in these conductors, which in turn sets up a counterbalancing magnetic field and this causes the motor to turn in the direction the field is rotating. This type of motor is known as an induction motor. In order for it to operate it must always run slower than the frequency of the power supply feeding it causes the magnetic field in the motor to rotate, otherwise no counterbalancing field is produced in the rotor. If the rotor coils are fed a separate field current to create a continuous magnetic field, one has a synchronous motor, because the motor will rotate in synchronism with the rotating magnetic field produced by the 3 phase AC power. Synchronous motors can also be used as generators.

AC motor speed primarily depends on the frequency of the AC supply and the amount of slip, or difference in rotation between the rotor and stator fields, determines the torque that the motor produces. The speed in this type of motor has traditionally been altered by having additional sets of coils or poles in the motor that can be switched on and off to change the speed of magnetic field rotation. However, developments in power electronics mean that the frequency of the power supply can also now be varied to provide a smoother control of the motor speed.

Stepper motors
Another kind of electric motor is the stepper motor, where an internal rotor containing permanent magnets is controlled by a set of external magnets that are switched electronically. A stepper motor is a cross between a DC electric motor and a solenoid. Simple stepper motors "cog" to a limited number of positions, but proportionally controlled stepper motors can rotate extremely smoothly. Computer controlled stepper motors are one of the most versatile forms of positioning systems, particularly when part of a digital servo-controlled system.

Linear motors
A linear motor is essentially an electric motor that has been "unrolled" so that instead of producing a torque (rotation), it produces a linear force along its length by setting up a travelling electromagnetic field. Linear motors are most commonly induction motors or stepper motors. You can find a linear motor in a maglev (Transrapid) train, where the train "flies" on the ground.
 

  Maglev Train
  Fuel Cell Cars
  Otto Cycle Car Engine
 
More How it Works
Computers
DVD
Surround Sound
 
Feature New Technology
Asimo Robot
Drive By Wire Car
Fuel Cells
Sony Dream Robot
 
Feature History
Airships
Concorde
Television
Telephone
 
Feature People
John Logie Baird
 
Feature Links
Top Selling Electronics

Did You Know?

The first successful hybrid car was designed by Ferdinand Porsche in 1928. While many hobbyists have made their own hybrids, no manufactures released a hybrid until the 90's  when the Honda Insight and Toyota Prius hit the market.

 

 

 

Terms of Use   Copyright © 1994 - 2011 -    A.B.N.  49 313 796 982

 products featured on GizmoHighway are owned by their respective companies and may be subject to copyright